
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 11, NOVEMBER 2017 2455

Manuscript received 15 Mar. 2017; accepted 24 July 2017.
Date of publication 7 Aug. 2017; date of current version 29 Sept. 2017.
Recommended for acceptance by W. Broll, H. Regenbrecht, and J.E. Swan II.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2017.2734578

1077-2626 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Real-Time View Correction for Mobile Devices
Thomas Schöps, Martin R. Oswald, Pablo Speciale, Shuoran Yang, and Marc Pollefeys

Abstract— We present a real-time method for rendering novel virtual camera views from given RGB-D (color and depth) data of a
different viewpoint. Missing color and depth information due to incomplete input or disocclusions is efficiently inpainted in a temporally
consistent way. The inpainting takes the location of strong image gradients into account as likely depth discontinuities. We present
our method in the context of a view correction system for mobile devices, and discuss how to obtain a screen-camera calibration and
options for acquiring depth input. Our method has use cases in both augmented and virtual reality applications. We demonstrate the
speed of our system and the visual quality of its results in multiple experiments in the paper as well as in the supplementary video.

Index Terms—View Correction, Depth Image Based Rendering (DIBR), Mobile Devices, Augmented Reality (AR)

1 INTRODUCTION

Virtual and augmented (or mixed) reality, VR and AR, are com-
monly believed to become more and more important in the near future.
Google’s Tango, for example, is an AR project which has enabled mo-
bile devices to localize themselves accurately in their environment and
perceive depth. AR applications on mobile devices typically overlay
their content over the device’s camera image directly, which they dis-
play on the screen. As a result, the displayed image does not match
the user’s perspective on the scene. See Fig. 1 (left) for an example,
showing the misalignment between objects in the image and the real
world. This detracts from the user experience and may be an obstacle
for these applications’ success; after all, smartphones only became as
commonplace as they are today once they became intuitive to use.

VR headsets, on the other hand, completely block the user’s view
on the real world. However, it is often convenient to be able to view
the real world without taking the headset off and putting it back on
afterwards. The HTC Vive, for example, contains a camera for this
purpose. In this scenario, the same issue arises: the camera’s view-
point does not match those of the user’s eyes, leading to discomfort
when displaying the camera image directly.

In this paper, we propose a real-time capable method to correct for
such viewpoint changes, i.e., for rendering the real-world scene from
an arbitrary observer’s viewpoint. We only use the image and depth
information from the camera’s point of view as input. Since it is often
impossible to reconstruct scenes completely, this requires the plausible
filling of unobserved regions. Fig. 1 (right) shows an example result of
our method. Using this method could enable a “virtual frame” viewing
mode for AR applications on mobile devices, and displaying correct
views in AR applications on VR devices with cameras.
Contributions. We make the following contributions in this paper: i)
We present a real-time capable pipeline for view correction in order
to render a scene from arbitrary viewpoints while filling in missing
information in a temporally consistent way. The pipeline’s main com-
ponent is a fast inpainting approach, proposed as an extension of [27].
ii) We describe methods for depth acquisition and system calibration,
and demonstrate our system in a number of experiments.

2 RELATED WORK

There is a large number of works on viewpoint interpolation, image
synthesis, depth image based rendering, and depth inpainting. After
discussing some early pioneering works, we focus on papers with ei-
ther similar methods or a similar application setting to ours.

Two early works on viewpoint interpolation and synthesis are [9],
as well as the pre- and post warping scheme by Seitz and Dyer [29].

• Thomas Schöps, Martin Oswald, Pablo Speciale, and Marc Pollefeys are
with the Department of Computer Science, ETH Zürich. Marc Pollefeys is
also with Microsoft. E-mail: firstname.lastname@inf.ethz.ch.

• Shuoran Yang is with Google. E-mail: shuorany@google.com.

Without view correction Proposed view correction

Fig. 1. Example application of the proposed method. The original cam-
era view (left) is transformed to a different viewpoint (right) in order to
match the user’s perspective on the scene.

Zitnick et al. [34] use superpixel segmentation to make depth jumps
align with edges in the input image during stereo depth estimation.
Further processing steps like disparity smoothing and Bayesian mat-
ting finally lead to high quality view interpolations. Lipski et al. [22]
combine view interpolation with temporal interpolation for multi-view
video sequences. Linz et al. [21] cast the interpolation as a labeling
problem to decide on a per-pixel basis which input image is sampled
to generate the synthesized view.

All these works expect multi-view image input and hence focus on
view interpolation rather than extrapolation. Moreover, these methods
are not suitable for real-time processing. Although some of them allow
for interactive exploration of scenes by view interpolation, they require
a considerable amount of preprocessing.

Other works expect depth input and focus on inpainting depth maps.
In [19] a tensor voting approach is used to perform depth inpainting.
[32] propose a hole filling approach for multi-view setups that espe-
cially accounts for inter-view consistency. Similar to [34], Buyssens
et al. [5] use superpixels in order to use image edge information to
guide the depth inpainting. Building upon [10], [6] present a method
for depth inpainting, and an exemplar-based color inpainting making
use of depth information. Luo et al. [24] focus on video processing
and use temporal information to fill in disoccluded areas. The results
are impressive, but numerous processing steps like background mod-
eling, foreground segmentation, and motion compensation make the
approach computationally expensive.

Impressive results have been achieved in real-time diminished real-
ity using inpainting by Kawai et al. [17]. They assume a static back-
ground geometry composed of few local planes. This allows them to
inpaint the planes once at the beginning such that at frame-rate only
the results need to be rendered.

Several previous works have explored ways of performing view
correction on mobile devices. In order to achieve fast runtimes and
to perform dense view correction based on sparse SLAM keypoints,
Tomioka et al. [30] optimize for a homography to approximate the cor-
rect transformation of the keypoints. As an advantage, the homogra-
phy transformation is consistent for the whole image and thus does not

Authorized licensed use limited to: MICROSOFT. Downloaded on June 04,2024 at 15:01:12 UTC from IEEE Xplore. Restrictions apply.

2456 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 11, NOVEMBER 2017

Observer
World Scene

DT (output)

DT,w

IT (output)

IT,w
DS,i

DS (input)IS (input)

Inpainting weights

(a)

(b)

(b)

(c)

(d)

(g)(f)

Camera

Camera View (Source) Observer View (Target)

Fig. 2. Pipeline overview. The key idea of our approach is to use edges in the input image (source view) to intelligently interpolate depth values
since image edges often coincide with depth discontinuities. The subsequent warping to the target view then requires additional interpolation
(inpainting). The individual steps are: The mobile device records the RGB image IS and depth map DS as input. (a) Edges are extracted from IS
to be used as inpainting weights. (b) DS is inpainted using these weights to get DS,i. (c) DS,i is warped to the virtual target viewpoint corresponding
to the view of the observer, resulting in DT,w. (d) IS is projected onto DT,w to compute the initial warped image IS,w. (e) The results of the previous
iteration of the pipeline are reprojected into the target view to achieve temporal consistency (not shown in figure). (f) Inpainting is applied to DT,w to
complete it. (g) Inpainting is applied to IT,w to complete it.

introduce local distortions. However, in non-planar scenes a homogra-
phy is not sufficient to correct the view. Baričević et al. [2, 3] present
a view correction system using a stereo camera. They developed a fast
semi-dense stereo approach and use it together with a gradient-based
inpainting method for image-based rendering with geometrically cor-
rect warping. However, despite using a workstation with one [2] or
two [3] GPUs, the system runs with 16 FPS only on average on this
hardware (with the slowest component being the image-based render-
ing), making it too expensive for current mobile devices.

In sum, a large amount of advanced inpainting techniques have been
proposed. However, only few of them are real-time capable and pro-
vide a good trade-off between result quality and runtime. For instance,
[1] achieves real-time performance in depth image based rendering for
3D-TV. However, in this setting the target view is always close to the
input view and only very small disocclusions need to be filled, which
in this case is done by a very simple heuristic that does not perform
well on larger inpainting regions. With the proposed approach we try
to find a good trade-off between the quality of the synthesized images
and the required processing time, allowing for real-time application on
modern mobile devices.

3 VIEW CORRECTION

The input to our method is a single image IS and a potentially incom-
plete depth map DS, both recorded at the same source camera view
S. The goal is to generate a complete and plausible virtual image IT ,
as well as a corresponding complete depth map DT , as they would be
seen from the given target camera view T . An accurate and complete
output depth map DT is crucial for augmented reality applications to
be able to account for occlusions of virtual objects by the real world
environment. Our processing pipeline consists of the following steps,
which are also visualized in Fig. 2:

(a) Compute inpainting weights from image IS.
(b) Inpaint DS to get a complete depth map DS,i in S.
(c) Reproject DS,i to T to get a warped depth map DT,w with disoc-

clusions, and warped inpainting weights.
(d) Reproject IS to T using DT,w to get an incomplete warped image

IT,w.
(e) Reproject DT and IT from the previous iteration of the pipeline

to DT,w and IT,w to achieve temporal consistency.
(f) Inpaint DT,w to get the complete depth map DT .
(g) Inpaint IS,w to get the complete image IT .

Since inpainting is an important component which is used in several
stages of our pipeline, we next present the fast inpainting method used
in our algorithm before we describe each of the pipeline steps in detail.

Input depth map Uniform weights (g(x) = 1) Uniformly inpainted depth

Input color image Weight map Weighted inpainted depth

Fig. 3. Uniform vs. weighted depth map inpainting. The edge informa-
tion helps to align depth discontinuities with object boundaries if they
have a different color than their surroundings.

3.1 Fast Inpainting

Inpainting is required to plausibly fill in missing information in areas
which are occluded or cannot be measured. This both applies to color
information and to depth information, which we use for image repro-
jection and also provide as an output of the method, such that it can be
used for occlusion testing.

A commonly used inpainting technique is Total Variation (TV) in-
painting [8]. This method is able to take 2D cues about possible loca-
tions of depth discontinuities into account that can considerably im-
prove the quality of the results (see Fig. 3). The idea behind this
method is to run a diffusion process in order to fill in missing values, in
which the existing values are used as boundary conditions. Moreover,
with a simple weighting scheme, depth discontinuities are favored at
locations with large gradient in the input image, because depth changes
often occur along color changes in the image.

This can be formulated as an optimization problem, minimizing the
total variation of the result image: Given a real valued image I : Ω→R
with image domain Ω, the goal is to fill in a region Γ ⊂ Ω in which the
image values are not known. The inpainted image J∗ : Ω → R can be
computed as the minimizer of the following energy:

J∗ = argmin
J

∫

Ω

g(x)‖∇J‖ε dx subject to J = I
∣∣
Ω\Γ (1)

where g : Ω → [0,1] is a weight function which can either favor or pe-
nalize jumps of J at certain locations x [4]. Here, ‖·‖ε denotes the
Huber-TV norm [7] which is defined as a hybrid of quadratic reg-
ularization to smooth noisy values smaller than ε ∈ R≥0 and an L1
regularization to be robust to outliers:

‖x‖ε :=

{
1

2ε |x|
2
2 if |x| ≤ ε

|x|− ε
2 otherwise

(2)

The limiting case ε = 0 corresponds to classical total variation regu-
larization, while ε → ∞ corresponds to quadratic regularization.

This optimization can be solved with the preconditioned first-order
primal-dual algorithm from [28]. However, even with an optimized
CUDA-based implementation, in our experiments the achieved run-
time performance was not sufficient for real-time performance on mo-
bile devices if the inpainting regions were large. Therefore, we chose
to employ a simpler method which approximates this TV inpainting.
Convolution-based Inpainting. In order to obtain an approximate
solution to (1) which can be computed much faster, we propose an
extension of [27]. This method leverages the fact that energy (1) with
purely quadratic regularization (ε→∞) corresponds to solving a linear
heat equation whose solution can be computed much more efficiently
via convolution [13, p.47].

Since our goal is to maintain discontinuities with the help of the
weight function g(·), we modify the convolution kernel by pixel-wise
multiplications with the underlying diffusion weights g. Hence, we
compute an approximate solution to (1) via the following weighted
convolution:

J(x)≈ (K ∗gI)(x,y) =
∫

Ω

K(a,b)g(x−a,y−b)
Z

I(x−a,y−b) dadb

(3)
where Z ensures proper normalization of the weighted kernel and K is
the discretized Gaussian-inspired 3×3 kernel proposed in [27] as

K =

a b a
b 0 b
a b a

 with a = 0.073235, b = 0.176765 . (4)

Only pixels in the inpainting domain Γ are recomputed by using the
image values of the full domain Ω. The convolution operation is re-
peated until the maximum change of a pixel’s value falls below a termi-
nation threshold or a maximum number of iterations is reached. The
weight directly influences the diffusion of information from a given
pixel; in the extreme case, with a weight of zero, a pixel will have no
influence on the values of its neighbors.

We further modify the algorithm to give zero weight in the convo-
lution to pixels which are pixels to be inpainted and have not received
any update from a boundary pixel yet. The maximum number of itera-
tions is set to the maximum of the width and height of the image to be
inpainted. This ensures that the algorithm is able to propagate infor-
mation over the maximum distance (from one corner of the image to
the other), while no traces of the initialization will be left over in the
result. It is important to note that the weighted convolution approach
approximates the quadratic penalization and the solution is different
from the minimizer of problem (1). A comparison is shown later in
Fig. 8. Nevertheless, the introduced weighting preserves depth dis-
continuities along image edges which is an important feature for the
visual output quality. Due to its simplicity, this algorithm can be im-
plemented to run very efficiently on a GPU and is therefore well suited
for our purposes.

3.2 Processing Pipeline
In this section, we explain the steps of our approach in detail.
(a), (b): Weighted source frame depth inpainting. For each pixel in
the input image IS, we first compute the inpainting weights g(·) from
the corresponding gradient magnitudes of the input image. For this
processing step, the weight function g : Ω → R≥0 is defined as

g(x) =
(
1+α ‖∇IS(x)‖2

)−1
, (5)

with α = 50
255 . This parameter represents the belief about the likelihood

of depth discontinuities depending on the image gradient magnitude.
The best value is scene-dependent, and we chose the value empirically.
As the next step, we perform an inpainting step on the input depth
image DS using these weights. The effect of the weighting function g
in this step is demonstrated in Fig. 3.

On the first sight, this first inpainting step may seem unnecessary
since both the depth map and image could also be inpainted after re-
projecting them to the target view T only, skipping this first inpainting
iteration. The reason for doing a first inpainting step in the input cam-
era view is that the the edges in the image from this view usually give
strong hints about the possible locations of depth discontinuities. This
information cannot be fully warped to another view, since depth es-
timates may not be known for all pixels. Especially for very sparse
input depth maps this information is valuable for computing accurate
depth maps of the scene.

Note that in the scenario of view correction for a VR headset which
has to provide one output image per eye, these initial processing steps
which operate in the source frame can be done only once for both
output images. However, if two camera views are available which bet-
ter match the positions of the eyes, separately running the complete
pipeline for each camera can lead to higher quality since less disocclu-
sions will occur when warping the depth maps to the eyes’ views.
(c), (d): Depth and image reprojection. The previous step of the
algorithm provides a dense depth map DS,i for the source frame. This
step uses this intermediate result to compute an initial partial depth
map DT,w and color image IT,w for the target view.

First, we generate a triangle mesh from the inpainted depth map
DS,i in order to have a continuous representation of the surface. This
enables to render it in the target view without potentially leaving holes.
We thereby proceed as follows: for each pixel from the inpainted depth
map, we generate a vertex at the unprojected 3D point corresponding
to the pixel. For each square of four adjacent pixels in the inpainted
depth map, we determine whether there is a depth jump at this location
in the depth image by testing whether the depth difference between any
two adjacent vertices among them is larger than 7 cm. This parameter
depends on the depth range and noise magnitude of the input depth
maps and was chosen empirically to give good results for our scenar-
ios. If this test recognizes a depth jump, we do not create any triangles
for these pixels. Otherwise, we create two triangles to connect the pix-
els’ vertices, which in the image projection cover the square spanned
up by the pixels. The final triangle mesh is then rendered as a depth
map in the target frame to produce an initial partial target depth map
DT,w.

We use this intermediate result to also reproject the input RGB im-
age to the target view. For each pixel having a depth value in DT,w, we
reproject the corresponding 3D point onto the input image IS and look
up the color value at the projected pixel position. This value is entered
at the corresponding pixel into the initial target frame color image IT,w.
(e): Reprojection of previous result. Treating every input frame in-
dependently will lead to flickering artifacts since the inpainting results
are very sensitive to the pixel values of the inpainting region borders.
Those borders are likely to change frequently due to camera move-
ments and image noise, for example. It is therefore important to ensure
temporally consistent inpainting to avoid creating distracting artifacts.

Since our method is intended for augmented reality applications, it
is safe to assume that the relative pose of the previous processed im-
age to the current image is known in the system. We therefore take the
result of the previous algorithm iteration, i.e., DT and IT , and repro-
ject it into DT,w and IT,w of the current algorithm iteration by simple
point cloud rendering. In doing so, we discard all points which project
to pixels in DT,w and IT,w that were already initialized in the previous
algorithm step. This gives new measurements precedence over propa-
gated old results.

If the previous result of the algorithm was correct, this algorithm
step will also geometrically correctly reproject it to the new image.
However, in practice the inpainting will deviate from the real world
since it cannot always guess correctly, and in addition the scene geom-
etry and colors may change, for example due to specular reflections.
Naively reprojecting the previous result may keep wrong values in the
image, preventing them from being replaced by improved results later.
We therefore add two modifications to this procedure: First, we ap-
ply slight blurring to IT during this reprojection step. This avoids the
preservation of distracting high-frequency artifacts. Second, we only
reproject every k-th pixel in DT and IT . This allows the inpainting re-

Authorized licensed use limited to: MICROSOFT. Downloaded on June 04,2024 at 15:01:12 UTC from IEEE Xplore. Restrictions apply.

SCHÖPS ET AL.: REAL-TIME VIEW CORRECTION FOR MOBILE DEVICES 2457

Observer
World Scene

DT (output)

DT,w

IT (output)

IT,w
DS,i

DS (input)IS (input)

Inpainting weights

(a)

(b)

(b)

(c)

(d)

(g)(f)

Camera

Camera View (Source) Observer View (Target)

Fig. 2. Pipeline overview. The key idea of our approach is to use edges in the input image (source view) to intelligently interpolate depth values
since image edges often coincide with depth discontinuities. The subsequent warping to the target view then requires additional interpolation
(inpainting). The individual steps are: The mobile device records the RGB image IS and depth map DS as input. (a) Edges are extracted from IS
to be used as inpainting weights. (b) DS is inpainted using these weights to get DS,i. (c) DS,i is warped to the virtual target viewpoint corresponding
to the view of the observer, resulting in DT,w. (d) IS is projected onto DT,w to compute the initial warped image IS,w. (e) The results of the previous
iteration of the pipeline are reprojected into the target view to achieve temporal consistency (not shown in figure). (f) Inpainting is applied to DT,w to
complete it. (g) Inpainting is applied to IT,w to complete it.

introduce local distortions. However, in non-planar scenes a homogra-
phy is not sufficient to correct the view. Baričević et al. [2, 3] present
a view correction system using a stereo camera. They developed a fast
semi-dense stereo approach and use it together with a gradient-based
inpainting method for image-based rendering with geometrically cor-
rect warping. However, despite using a workstation with one [2] or
two [3] GPUs, the system runs with 16 FPS only on average on this
hardware (with the slowest component being the image-based render-
ing), making it too expensive for current mobile devices.

In sum, a large amount of advanced inpainting techniques have been
proposed. However, only few of them are real-time capable and pro-
vide a good trade-off between result quality and runtime. For instance,
[1] achieves real-time performance in depth image based rendering for
3D-TV. However, in this setting the target view is always close to the
input view and only very small disocclusions need to be filled, which
in this case is done by a very simple heuristic that does not perform
well on larger inpainting regions. With the proposed approach we try
to find a good trade-off between the quality of the synthesized images
and the required processing time, allowing for real-time application on
modern mobile devices.

3 VIEW CORRECTION

The input to our method is a single image IS and a potentially incom-
plete depth map DS, both recorded at the same source camera view
S. The goal is to generate a complete and plausible virtual image IT ,
as well as a corresponding complete depth map DT , as they would be
seen from the given target camera view T . An accurate and complete
output depth map DT is crucial for augmented reality applications to
be able to account for occlusions of virtual objects by the real world
environment. Our processing pipeline consists of the following steps,
which are also visualized in Fig. 2:

(a) Compute inpainting weights from image IS.
(b) Inpaint DS to get a complete depth map DS,i in S.
(c) Reproject DS,i to T to get a warped depth map DT,w with disoc-

clusions, and warped inpainting weights.
(d) Reproject IS to T using DT,w to get an incomplete warped image

IT,w.
(e) Reproject DT and IT from the previous iteration of the pipeline

to DT,w and IT,w to achieve temporal consistency.
(f) Inpaint DT,w to get the complete depth map DT .
(g) Inpaint IS,w to get the complete image IT .

Since inpainting is an important component which is used in several
stages of our pipeline, we next present the fast inpainting method used
in our algorithm before we describe each of the pipeline steps in detail.

Input depth map Uniform weights (g(x) = 1) Uniformly inpainted depth

Input color image Weight map Weighted inpainted depth

Fig. 3. Uniform vs. weighted depth map inpainting. The edge informa-
tion helps to align depth discontinuities with object boundaries if they
have a different color than their surroundings.

3.1 Fast Inpainting

Inpainting is required to plausibly fill in missing information in areas
which are occluded or cannot be measured. This both applies to color
information and to depth information, which we use for image repro-
jection and also provide as an output of the method, such that it can be
used for occlusion testing.

A commonly used inpainting technique is Total Variation (TV) in-
painting [8]. This method is able to take 2D cues about possible loca-
tions of depth discontinuities into account that can considerably im-
prove the quality of the results (see Fig. 3). The idea behind this
method is to run a diffusion process in order to fill in missing values, in
which the existing values are used as boundary conditions. Moreover,
with a simple weighting scheme, depth discontinuities are favored at
locations with large gradient in the input image, because depth changes
often occur along color changes in the image.

This can be formulated as an optimization problem, minimizing the
total variation of the result image: Given a real valued image I : Ω→R
with image domain Ω, the goal is to fill in a region Γ ⊂ Ω in which the
image values are not known. The inpainted image J∗ : Ω → R can be
computed as the minimizer of the following energy:

J∗ = argmin
J

∫

Ω

g(x)‖∇J‖ε dx subject to J = I
∣∣
Ω\Γ (1)

where g : Ω → [0,1] is a weight function which can either favor or pe-
nalize jumps of J at certain locations x [4]. Here, ‖·‖ε denotes the
Huber-TV norm [7] which is defined as a hybrid of quadratic reg-
ularization to smooth noisy values smaller than ε ∈ R≥0 and an L1
regularization to be robust to outliers:

‖x‖ε :=

{
1

2ε |x|
2
2 if |x| ≤ ε

|x|− ε
2 otherwise

(2)

The limiting case ε = 0 corresponds to classical total variation regu-
larization, while ε → ∞ corresponds to quadratic regularization.

This optimization can be solved with the preconditioned first-order
primal-dual algorithm from [28]. However, even with an optimized
CUDA-based implementation, in our experiments the achieved run-
time performance was not sufficient for real-time performance on mo-
bile devices if the inpainting regions were large. Therefore, we chose
to employ a simpler method which approximates this TV inpainting.
Convolution-based Inpainting. In order to obtain an approximate
solution to (1) which can be computed much faster, we propose an
extension of [27]. This method leverages the fact that energy (1) with
purely quadratic regularization (ε→∞) corresponds to solving a linear
heat equation whose solution can be computed much more efficiently
via convolution [13, p.47].

Since our goal is to maintain discontinuities with the help of the
weight function g(·), we modify the convolution kernel by pixel-wise
multiplications with the underlying diffusion weights g. Hence, we
compute an approximate solution to (1) via the following weighted
convolution:

J(x)≈ (K ∗gI)(x,y) =
∫

Ω

K(a,b)g(x−a,y−b)
Z

I(x−a,y−b) dadb

(3)
where Z ensures proper normalization of the weighted kernel and K is
the discretized Gaussian-inspired 3×3 kernel proposed in [27] as

K =

a b a
b 0 b
a b a

 with a = 0.073235, b = 0.176765 . (4)

Only pixels in the inpainting domain Γ are recomputed by using the
image values of the full domain Ω. The convolution operation is re-
peated until the maximum change of a pixel’s value falls below a termi-
nation threshold or a maximum number of iterations is reached. The
weight directly influences the diffusion of information from a given
pixel; in the extreme case, with a weight of zero, a pixel will have no
influence on the values of its neighbors.

We further modify the algorithm to give zero weight in the convo-
lution to pixels which are pixels to be inpainted and have not received
any update from a boundary pixel yet. The maximum number of itera-
tions is set to the maximum of the width and height of the image to be
inpainted. This ensures that the algorithm is able to propagate infor-
mation over the maximum distance (from one corner of the image to
the other), while no traces of the initialization will be left over in the
result. It is important to note that the weighted convolution approach
approximates the quadratic penalization and the solution is different
from the minimizer of problem (1). A comparison is shown later in
Fig. 8. Nevertheless, the introduced weighting preserves depth dis-
continuities along image edges which is an important feature for the
visual output quality. Due to its simplicity, this algorithm can be im-
plemented to run very efficiently on a GPU and is therefore well suited
for our purposes.

3.2 Processing Pipeline
In this section, we explain the steps of our approach in detail.
(a), (b): Weighted source frame depth inpainting. For each pixel in
the input image IS, we first compute the inpainting weights g(·) from
the corresponding gradient magnitudes of the input image. For this
processing step, the weight function g : Ω → R≥0 is defined as

g(x) =
(
1+α ‖∇IS(x)‖2

)−1
, (5)

with α = 50
255 . This parameter represents the belief about the likelihood

of depth discontinuities depending on the image gradient magnitude.
The best value is scene-dependent, and we chose the value empirically.
As the next step, we perform an inpainting step on the input depth
image DS using these weights. The effect of the weighting function g
in this step is demonstrated in Fig. 3.

On the first sight, this first inpainting step may seem unnecessary
since both the depth map and image could also be inpainted after re-
projecting them to the target view T only, skipping this first inpainting
iteration. The reason for doing a first inpainting step in the input cam-
era view is that the the edges in the image from this view usually give
strong hints about the possible locations of depth discontinuities. This
information cannot be fully warped to another view, since depth es-
timates may not be known for all pixels. Especially for very sparse
input depth maps this information is valuable for computing accurate
depth maps of the scene.

Note that in the scenario of view correction for a VR headset which
has to provide one output image per eye, these initial processing steps
which operate in the source frame can be done only once for both
output images. However, if two camera views are available which bet-
ter match the positions of the eyes, separately running the complete
pipeline for each camera can lead to higher quality since less disocclu-
sions will occur when warping the depth maps to the eyes’ views.
(c), (d): Depth and image reprojection. The previous step of the
algorithm provides a dense depth map DS,i for the source frame. This
step uses this intermediate result to compute an initial partial depth
map DT,w and color image IT,w for the target view.

First, we generate a triangle mesh from the inpainted depth map
DS,i in order to have a continuous representation of the surface. This
enables to render it in the target view without potentially leaving holes.
We thereby proceed as follows: for each pixel from the inpainted depth
map, we generate a vertex at the unprojected 3D point corresponding
to the pixel. For each square of four adjacent pixels in the inpainted
depth map, we determine whether there is a depth jump at this location
in the depth image by testing whether the depth difference between any
two adjacent vertices among them is larger than 7 cm. This parameter
depends on the depth range and noise magnitude of the input depth
maps and was chosen empirically to give good results for our scenar-
ios. If this test recognizes a depth jump, we do not create any triangles
for these pixels. Otherwise, we create two triangles to connect the pix-
els’ vertices, which in the image projection cover the square spanned
up by the pixels. The final triangle mesh is then rendered as a depth
map in the target frame to produce an initial partial target depth map
DT,w.

We use this intermediate result to also reproject the input RGB im-
age to the target view. For each pixel having a depth value in DT,w, we
reproject the corresponding 3D point onto the input image IS and look
up the color value at the projected pixel position. This value is entered
at the corresponding pixel into the initial target frame color image IT,w.
(e): Reprojection of previous result. Treating every input frame in-
dependently will lead to flickering artifacts since the inpainting results
are very sensitive to the pixel values of the inpainting region borders.
Those borders are likely to change frequently due to camera move-
ments and image noise, for example. It is therefore important to ensure
temporally consistent inpainting to avoid creating distracting artifacts.

Since our method is intended for augmented reality applications, it
is safe to assume that the relative pose of the previous processed im-
age to the current image is known in the system. We therefore take the
result of the previous algorithm iteration, i.e., DT and IT , and repro-
ject it into DT,w and IT,w of the current algorithm iteration by simple
point cloud rendering. In doing so, we discard all points which project
to pixels in DT,w and IT,w that were already initialized in the previous
algorithm step. This gives new measurements precedence over propa-
gated old results.

If the previous result of the algorithm was correct, this algorithm
step will also geometrically correctly reproject it to the new image.
However, in practice the inpainting will deviate from the real world
since it cannot always guess correctly, and in addition the scene geom-
etry and colors may change, for example due to specular reflections.
Naively reprojecting the previous result may keep wrong values in the
image, preventing them from being replaced by improved results later.
We therefore add two modifications to this procedure: First, we ap-
ply slight blurring to IT during this reprojection step. This avoids the
preservation of distracting high-frequency artifacts. Second, we only
reproject every k-th pixel in DT and IT . This allows the inpainting re-

Authorized licensed use limited to: MICROSOFT. Downloaded on June 04,2024 at 15:01:12 UTC from IEEE Xplore. Restrictions apply.

2458 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 11, NOVEMBER 2017

sults to get updated with new information gradually. The parameter k
trades off temporal consistency vs. the ability to correct errors using
new data. According to our experiments the choice of this parameter
is not critical to the algorithm; we used k = 4 for all experiments.

We remark that for this algorithm step either the exposure settings
of the camera should be fixed, or potential changes should be ac-
counted for if known, to prevent mixing differently exposed images.
(f), (g): Weighted target frame depth and color inpainting. Due to
disocclusions or unobserved regions, DT,w and IT,w can still contain
holes. Thus, we perform a second inpainting step to fill such holes,
which is now performed in the target frame.

Disocclusions will typically uncover surfaces in the background.
We thus want to prefer inpainting values of the background in these
places instead of diffusing the values of the foreground. To facilitate
this we again use weighted inpainting. The inpainting weights are
calculated jointly with the warped depth map in step (c) as follows:
For each vertex of the triangle mesh created from the inpainted source
depth map DS,i, we determine whether any of the vertices in its 4-
neighborhood defined on the pixel grid has a larger depth than that of
the center pixel by at least the depth jump threshold. If so, we classify
this vertex as a foreground boundary vertex. Simultaneously to the
depth map rendering of the reprojection step (c), we also render an in-
tensity image of the same mesh where the intensity of each vertex is set
to 255 if it is a foreground boundary vertex, and zero otherwise. The
resulting rendered pixel intensities are binarized by thresholding (in-
dicating whether there is a depth jump at a pixel or not), and remapped
to the minimum and maximum inpainting weight given by Eq. 5, re-
spectively, to define g(x) for these inpainting steps. See Fig. 10 for
examples of the weights computed by this method.

4 SYSTEM INTEGRATION

In this section, we show how our view correction method defined in
Sec. 3 can be integrated into a complete system for mobile devices.

4.1 Depth Map Acquisition
Our approach requires depth maps DS as input in order to reproject im-
ages from the source view to the target view. In this work, we evaluate
two different options for obtaining depth maps. The first is directly
using images returned by a depth sensor (c.f . Sec. 4.1.2). The second
is creating a 3D reconstruction in the background while the applica-
tion is running, and rendering it as a depth map when required (c.f .
Sec. 4.1.3). In both cases, it is necessary to have estimates of the cam-
era poses, either for relating the last obtained depth map to the current
camera pose or to fuse depth maps into the reconstruction. Therefore,
first we shortly describe the camera pose tracking approach we use.

4.1.1 Camera Pose Estimation
In order to determine the camera poses of the mobile device in real-
time, we use the motion tracking ability of Google Tango (based on
[15]). The use of accelerometer measurements in this approach makes
the absolute scale of the trajectory observable. Although the imple-
mentation we use is specific to Tango devices, we note that very simi-
lar results for visual-inertial odometry in terms of odometry drift have
been reported in [31], which is able to run on standard mobile devices.

4.1.2 Depth from Sensor
Our approach is able to directly use the depth maps obtained from a
depth sensor, even if they are sparse (c.f . Fig. 5). Using this direct type
of depth map acquisition, i.e., without temporal integration, has the ad-
vantage that no potentially outdated information is used. Furthermore,
it presents the limiting case in the sense that directly after startup, or
after moving into a new area, only one depth map is available.

4.1.3 Depth from 3D Reconstruction
As an alternative to directly using depth sensor readings, we perform
3D reconstruction to accumulate the raw sensor estimates to gain more
complete and accurate information. We use the 3D reconstruction im-
plementation of Google Tango [18] for this task. It is based on Trun-
cated Signed Distance Function (TSDF) fusion [11] in a volume with

External checkerboard

External camera

Device

T1

T2

T3

T

Fig. 4. Red arrows represent the extrinsics from the checkerboard to the
camera coordinate systems. The transformation T , the screen-camera
calibration, can be computed from those extrinsics.

voxel hashing [26]. The isosurface of the TSDF corresponding to the
real-world surface is extracted using Marching Cubes [23]. Having a
reconstructed mesh and the camera pose of a new source image IS, a
matching depth map DS can then be generated by rendering the mesh.

While [18] has been implemented for Tango devices, other fast im-
plementations for mobile devices have been proposed, for example
[16]. Note that our view correction method only requires the rendered
depth map at the current camera pose. Thus it is easily possible to use
other 3D reconstruction methods with our approach.

4.2 Observer Position
The proper placement of the virtual target view is crucial for accurate
view correction. This first requires to calibrate the relation between
the device’s camera (which defines the source frame for DS and IS)
and the device’s screen (which is observed by the user, whose eyes
eventually define the target frame for DT and IT). In this section, we
first describe the screen calibration method we used, and then give
options for determining the user’s eye positions.

4.2.1 Screen-Camera Calibration
We estimated the extrinsic calibration between the screen and the back
camera of a mobile device as in [2]. This is illustrated in Fig. 4.

The method requires two checkerboards: an external one represent-
ing the world coordinate system, and a separate checkerboard dis-
played on the device’s screen. The device’s back camera captures
pictures of the external checkerboard. At the same time, an exter-
nal camera is used to capture pictures which show both checkerboards
simultaneously: the external one, and the one on the screen. Follow-
ing usual calibration procedures [14, 33], for both cameras the rela-
tive pose to each visible checkerboard can be determined from those
pictures, denoted T1, T2, and T3 in Fig. 4. Using this notation, the
screen-camera calibration T can be expressed as:

T = T3 ·T−1
1 ·T2

For determining the metric screen corner positions from this calibra-
tion, we use the squares of the displayed checkerboard. Its square size
is known in pixels, and therefore also in metric units on the display
from the display’s pixels per inch (PPI) specification. Similar screen-
camera calibration methods have been presented in [12, 20].

4.2.2 Eye tracking
The user’s eye positions must be known to determine the target frame
for the view correction. For the scenario of a VR headset, the position
depends on the geometry between lenses, screen and the user’s eyes.
However, it can be calibrated once and remains largely static after-
ward. For the purposes of this paper, we assume that a static position
is known in this case.

For the scenario of a device whose screen moves relative to the
user’s eyes, the user’s eyes need to be tracked. Unfortunately, our test

Fig. 5. Examples of inpainted depth maps (middle) and corrected views
(right) with single depth maps (left) as input.

Fig. 6. Example stereo image pair generated by our method. For
this figure, we ran the first part of the pipeline (steps (a) and (b) which
operate in the source frame) only once during the computation of both
output views. A virtual model of R2-D2 is rendered into the scene, which
gets occluded by the real box.

hardware (like many other current mobile devices) does not support
the concurrent use of the front- and back-facing cameras, which made
it impossible to run an eye-tracking algorithm on images of the front
camera. In order to simulate this scenario and for evaluation purposes,
we therefore used a second mobile device which observes the first one.
Both devices localize themselves against a pre-built map of the envi-
ronment using Google Tango’s odometry [15] and re-localization [25]
capabilities. The observing device then wirelessly sends its camera
position to the first device in real-time. This way, we can choose the
observing camera position as the virtual target viewpoint for the first
device that performs the view correction.

5 RESULTS

We evaluated our approach on two hardware platforms: 1) a PC with
an Intel Core i7-4770K processor and an Nvidia GeForce 780 GTX
graphics card, and 2) a Google Tango Development Kit Tablet with an
Nvidia Tegra K1 chip, which is equipped with a structured light depth
sensor and a 4MP color camera. All datasets have been recorded with
the Tango tablet, whose depth camera records depth maps with ca. 5
Hz (leading to regular fluctuations in computation time when moving
the camera, as more or less pixels need to be inpainted depending on
the availability of recent depth data).

We use the following image resolutions for all experiments:

Fig. 7. Examples of view correction results from our system, as seen
by the observer. Top: Fixed relative observer pose. In the left image,
an AR object is rendered into the view. Bottom: Dynamic observer pose
with two tablets (c.f . Sec. 4.2.2). We show these experiments in action
in the supplementary video.

• Input depth map size: 320×180 pixels.
• Input color image size: 1280×720 pixels.
• Target image size: 480×300 pixels (for monocular output).
Ideally, the target image size would be equal to the screen resolu-

tion. However, on the one hand the use of larger resolutions increases
the runtimes. On the other hand, the resolution of the depth sensor
used as input is very low, and upscaling the depth maps has its limits,
leading to a limited gain in quality. In the choice of this resolution,
we therefore prioritized interactive runtimes on the tablet device. If
preserving the highest possible color detail was critical, we think that
a fast possibility would be to perform the direct reprojection (pipeline
step (d)) to a high resolution image, while keeping the inpainting at a
low resolution and upsampling its result to the high resolution.

All steps of our algorithm have been implemented with CUDA on
the GPU. Our implementations are optimized: we make use of shared
memory to run multiple convolution iterations for inpainting in a sin-
gle CUDA kernel call without having to write data back to global
memory, and try to avoid thread divergence.

In order to compare the inpainting quality and the processing speed
of the TV inpainting approach with the weighted convolution ap-
proach, we show two inpainted example frames in Fig. 8 (left). The
results are comparable; depending on the scene, sometimes one ap-
proach gives slightly better results than the other and vice versa. Most
importantly, both approaches preserve dominant edges in the depth
maps which is crucial to minimize artifacts when the depth map is
rendered from the target view point.

5.1 Qualitative Evaluation
We show qualitative results for all steps in our pipeline (c.f . Fig. 2, 10)
using the weighted convolution inpainting. In particular, in Fig. 5 we
show some examples of using sparse depth maps as input to the algo-
rithm. Given sufficient depth information nearby, our method is able
to fill in missing regions and correctly handle them. Fig. 6 shows by
example how virtual objects can get occluded by real objects in an AR
use case for the scenario of a VR headset, using the inpainted target
frame depth map for occlusion testing. Fig. 7 shows additional exam-
ples of view correction results, as seen by the observer. Furthermore,
we strongly recommend viewing the supplementary video to this work
since the method’s performance is best viewed in motion. In particu-
lar, the supplementary video shows a comparison between using the
temporal consistency step and inpainting every frame independently,
which is very hard to show on static images.

5.2 Quantitative Evaluation
For a quantitative error analysis of our results, we recorded an RGB-D
dataset and for each frame set the target camera frame for view cor-
rection to the camera pose of its previous frame, which we use as the

Authorized licensed use limited to: MICROSOFT. Downloaded on June 04,2024 at 15:01:12 UTC from IEEE Xplore. Restrictions apply.

SCHÖPS ET AL.: REAL-TIME VIEW CORRECTION FOR MOBILE DEVICES 2459

sults to get updated with new information gradually. The parameter k
trades off temporal consistency vs. the ability to correct errors using
new data. According to our experiments the choice of this parameter
is not critical to the algorithm; we used k = 4 for all experiments.

We remark that for this algorithm step either the exposure settings
of the camera should be fixed, or potential changes should be ac-
counted for if known, to prevent mixing differently exposed images.
(f), (g): Weighted target frame depth and color inpainting. Due to
disocclusions or unobserved regions, DT,w and IT,w can still contain
holes. Thus, we perform a second inpainting step to fill such holes,
which is now performed in the target frame.

Disocclusions will typically uncover surfaces in the background.
We thus want to prefer inpainting values of the background in these
places instead of diffusing the values of the foreground. To facilitate
this we again use weighted inpainting. The inpainting weights are
calculated jointly with the warped depth map in step (c) as follows:
For each vertex of the triangle mesh created from the inpainted source
depth map DS,i, we determine whether any of the vertices in its 4-
neighborhood defined on the pixel grid has a larger depth than that of
the center pixel by at least the depth jump threshold. If so, we classify
this vertex as a foreground boundary vertex. Simultaneously to the
depth map rendering of the reprojection step (c), we also render an in-
tensity image of the same mesh where the intensity of each vertex is set
to 255 if it is a foreground boundary vertex, and zero otherwise. The
resulting rendered pixel intensities are binarized by thresholding (in-
dicating whether there is a depth jump at a pixel or not), and remapped
to the minimum and maximum inpainting weight given by Eq. 5, re-
spectively, to define g(x) for these inpainting steps. See Fig. 10 for
examples of the weights computed by this method.

4 SYSTEM INTEGRATION

In this section, we show how our view correction method defined in
Sec. 3 can be integrated into a complete system for mobile devices.

4.1 Depth Map Acquisition
Our approach requires depth maps DS as input in order to reproject im-
ages from the source view to the target view. In this work, we evaluate
two different options for obtaining depth maps. The first is directly
using images returned by a depth sensor (c.f . Sec. 4.1.2). The second
is creating a 3D reconstruction in the background while the applica-
tion is running, and rendering it as a depth map when required (c.f .
Sec. 4.1.3). In both cases, it is necessary to have estimates of the cam-
era poses, either for relating the last obtained depth map to the current
camera pose or to fuse depth maps into the reconstruction. Therefore,
first we shortly describe the camera pose tracking approach we use.

4.1.1 Camera Pose Estimation
In order to determine the camera poses of the mobile device in real-
time, we use the motion tracking ability of Google Tango (based on
[15]). The use of accelerometer measurements in this approach makes
the absolute scale of the trajectory observable. Although the imple-
mentation we use is specific to Tango devices, we note that very simi-
lar results for visual-inertial odometry in terms of odometry drift have
been reported in [31], which is able to run on standard mobile devices.

4.1.2 Depth from Sensor
Our approach is able to directly use the depth maps obtained from a
depth sensor, even if they are sparse (c.f . Fig. 5). Using this direct type
of depth map acquisition, i.e., without temporal integration, has the ad-
vantage that no potentially outdated information is used. Furthermore,
it presents the limiting case in the sense that directly after startup, or
after moving into a new area, only one depth map is available.

4.1.3 Depth from 3D Reconstruction
As an alternative to directly using depth sensor readings, we perform
3D reconstruction to accumulate the raw sensor estimates to gain more
complete and accurate information. We use the 3D reconstruction im-
plementation of Google Tango [18] for this task. It is based on Trun-
cated Signed Distance Function (TSDF) fusion [11] in a volume with

External checkerboard

External camera

Device

T1

T2

T3

T

Fig. 4. Red arrows represent the extrinsics from the checkerboard to the
camera coordinate systems. The transformation T , the screen-camera
calibration, can be computed from those extrinsics.

voxel hashing [26]. The isosurface of the TSDF corresponding to the
real-world surface is extracted using Marching Cubes [23]. Having a
reconstructed mesh and the camera pose of a new source image IS, a
matching depth map DS can then be generated by rendering the mesh.

While [18] has been implemented for Tango devices, other fast im-
plementations for mobile devices have been proposed, for example
[16]. Note that our view correction method only requires the rendered
depth map at the current camera pose. Thus it is easily possible to use
other 3D reconstruction methods with our approach.

4.2 Observer Position
The proper placement of the virtual target view is crucial for accurate
view correction. This first requires to calibrate the relation between
the device’s camera (which defines the source frame for DS and IS)
and the device’s screen (which is observed by the user, whose eyes
eventually define the target frame for DT and IT). In this section, we
first describe the screen calibration method we used, and then give
options for determining the user’s eye positions.

4.2.1 Screen-Camera Calibration
We estimated the extrinsic calibration between the screen and the back
camera of a mobile device as in [2]. This is illustrated in Fig. 4.

The method requires two checkerboards: an external one represent-
ing the world coordinate system, and a separate checkerboard dis-
played on the device’s screen. The device’s back camera captures
pictures of the external checkerboard. At the same time, an exter-
nal camera is used to capture pictures which show both checkerboards
simultaneously: the external one, and the one on the screen. Follow-
ing usual calibration procedures [14, 33], for both cameras the rela-
tive pose to each visible checkerboard can be determined from those
pictures, denoted T1, T2, and T3 in Fig. 4. Using this notation, the
screen-camera calibration T can be expressed as:

T = T3 ·T−1
1 ·T2

For determining the metric screen corner positions from this calibra-
tion, we use the squares of the displayed checkerboard. Its square size
is known in pixels, and therefore also in metric units on the display
from the display’s pixels per inch (PPI) specification. Similar screen-
camera calibration methods have been presented in [12, 20].

4.2.2 Eye tracking
The user’s eye positions must be known to determine the target frame
for the view correction. For the scenario of a VR headset, the position
depends on the geometry between lenses, screen and the user’s eyes.
However, it can be calibrated once and remains largely static after-
ward. For the purposes of this paper, we assume that a static position
is known in this case.

For the scenario of a device whose screen moves relative to the
user’s eyes, the user’s eyes need to be tracked. Unfortunately, our test

Fig. 5. Examples of inpainted depth maps (middle) and corrected views
(right) with single depth maps (left) as input.

Fig. 6. Example stereo image pair generated by our method. For
this figure, we ran the first part of the pipeline (steps (a) and (b) which
operate in the source frame) only once during the computation of both
output views. A virtual model of R2-D2 is rendered into the scene, which
gets occluded by the real box.

hardware (like many other current mobile devices) does not support
the concurrent use of the front- and back-facing cameras, which made
it impossible to run an eye-tracking algorithm on images of the front
camera. In order to simulate this scenario and for evaluation purposes,
we therefore used a second mobile device which observes the first one.
Both devices localize themselves against a pre-built map of the envi-
ronment using Google Tango’s odometry [15] and re-localization [25]
capabilities. The observing device then wirelessly sends its camera
position to the first device in real-time. This way, we can choose the
observing camera position as the virtual target viewpoint for the first
device that performs the view correction.

5 RESULTS

We evaluated our approach on two hardware platforms: 1) a PC with
an Intel Core i7-4770K processor and an Nvidia GeForce 780 GTX
graphics card, and 2) a Google Tango Development Kit Tablet with an
Nvidia Tegra K1 chip, which is equipped with a structured light depth
sensor and a 4MP color camera. All datasets have been recorded with
the Tango tablet, whose depth camera records depth maps with ca. 5
Hz (leading to regular fluctuations in computation time when moving
the camera, as more or less pixels need to be inpainted depending on
the availability of recent depth data).

We use the following image resolutions for all experiments:

Fig. 7. Examples of view correction results from our system, as seen
by the observer. Top: Fixed relative observer pose. In the left image,
an AR object is rendered into the view. Bottom: Dynamic observer pose
with two tablets (c.f . Sec. 4.2.2). We show these experiments in action
in the supplementary video.

• Input depth map size: 320×180 pixels.
• Input color image size: 1280×720 pixels.
• Target image size: 480×300 pixels (for monocular output).
Ideally, the target image size would be equal to the screen resolu-

tion. However, on the one hand the use of larger resolutions increases
the runtimes. On the other hand, the resolution of the depth sensor
used as input is very low, and upscaling the depth maps has its limits,
leading to a limited gain in quality. In the choice of this resolution,
we therefore prioritized interactive runtimes on the tablet device. If
preserving the highest possible color detail was critical, we think that
a fast possibility would be to perform the direct reprojection (pipeline
step (d)) to a high resolution image, while keeping the inpainting at a
low resolution and upsampling its result to the high resolution.

All steps of our algorithm have been implemented with CUDA on
the GPU. Our implementations are optimized: we make use of shared
memory to run multiple convolution iterations for inpainting in a sin-
gle CUDA kernel call without having to write data back to global
memory, and try to avoid thread divergence.

In order to compare the inpainting quality and the processing speed
of the TV inpainting approach with the weighted convolution ap-
proach, we show two inpainted example frames in Fig. 8 (left). The
results are comparable; depending on the scene, sometimes one ap-
proach gives slightly better results than the other and vice versa. Most
importantly, both approaches preserve dominant edges in the depth
maps which is crucial to minimize artifacts when the depth map is
rendered from the target view point.

5.1 Qualitative Evaluation
We show qualitative results for all steps in our pipeline (c.f . Fig. 2, 10)
using the weighted convolution inpainting. In particular, in Fig. 5 we
show some examples of using sparse depth maps as input to the algo-
rithm. Given sufficient depth information nearby, our method is able
to fill in missing regions and correctly handle them. Fig. 6 shows by
example how virtual objects can get occluded by real objects in an AR
use case for the scenario of a VR headset, using the inpainted target
frame depth map for occlusion testing. Fig. 7 shows additional exam-
ples of view correction results, as seen by the observer. Furthermore,
we strongly recommend viewing the supplementary video to this work
since the method’s performance is best viewed in motion. In particu-
lar, the supplementary video shows a comparison between using the
temporal consistency step and inpainting every frame independently,
which is very hard to show on static images.

5.2 Quantitative Evaluation
For a quantitative error analysis of our results, we recorded an RGB-D
dataset and for each frame set the target camera frame for view cor-
rection to the camera pose of its previous frame, which we use as the

Authorized licensed use limited to: MICROSOFT. Downloaded on June 04,2024 at 15:01:12 UTC from IEEE Xplore. Restrictions apply.

2460 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 11, NOVEMBER 2017

Color image Depth input TV result Convolution result TV inpainting timings on PC
Fr

am
e

1

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

Fr
am

e
2

Fig. 8. Comparison between Huber-TV inpainting and our weighted convolution inpainting approach for two example frames. We used α = 1 for
computing the weights used by the TV inpainting (c.f . Eq. 5). The performance plot corresponds to the right plot in Fig. 9. We developed optimized
implementations of both algorithms; convolution-based inpainting is roughly an order of magnitude faster.

Tango Development Kit Tablet PC

0 100 200 300 400 500 600 700
0

20

40

60

80

100

0 100 200 300 400 500 600 700
0

10000
20000
30000
40000

0 100 200 300 400 500 600 700
0

10000

20000

30000

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

0 100 200 300 400 500 600 700 800
0

10000
20000
30000
40000

0 100 200 300 400 500 600 700 800
0

10000

20000

Render depth image

Upload color image

Dowsample image

Calc. gradient mag.

Inpaint depth (S)

Mesh depth map

Render mesh

Reproject color

Reproject last frame

Inpaint depth (T)

Inpaint color (T)

Fig. 9. First row: Example timings in milliseconds (y axis) for a dataset over a series of frames (x axis) for the different steps of the algorithm, on a
Project Tango Development Kit Tablet (left) and on a PC (right). The tablet drops some frames and thus frame numbers do not correspond. Most
steps are very fast compared to the inpainting and therefore hardly appear in the plot. Since the inpainting speed strongly depends on the size of
the inpainting regions, we show the number of inpainted pixels in the source frame in the second row, and the number of inpainted pixels in the
target frame in the bottom row. This plot is made for the case of using a mesh for depth input. The first step therefore refers to rendering the mesh.
The second and third steps refer to transferring (uploading) IS to the GPU and scaling it to the depth map’s resolution.

Table 1. Average time in milliseconds for individual algorithm steps, and
for a complete frame, corresponding to the graphs shown in Fig. 9.

Source frame steps Tablet PC Target frame steps Tablet PC
Render depth image 1.5 0.4 Render mesh 2.0 0.2
Upload color image 3.0 0.2 Reproject color 0.6 <0.1
Dowsample image 1.0 <0.1 Reproject last frame 0.4 <0.1
Calc. gradient mag. 0.3 <0.1 Inpaint depth (T) 2.1 0.2
Inpaint depth (S) 11.8 0.8 Inpaint color (T) 2.6 0.2
Mesh depth map 1.5 0.2
Complete frame 26.7 2.2

ground truth. Since we have the corresponding input image, we know
how the warped target image should look like. Hence, we measure the
average pixel-wise error between the view correction result and the
ground truth image over an entire sequence. We did not enforce tem-
poral consistency (step (e) in the pipeline) for this experiment. The
evaluation has been limited to pixels which are farther away than 40
pixels from the image border. This is to avoid comparing border re-
gions where there is very little or no adjacent color and depth infor-
mation which can be used for inpainting, such that it would not be
fair to evaluate these regions. Pixel values are in [0,255]. The aver-
age per-channel absolute difference per pixel is 5.7 for using the depth
camera directly, and 5.5 for using a reconstructed mesh. If performing
all inpainting steps with uniform weights instead of using the proposed
weighting, the error roughly stays the same for the case of using mesh
input, while it slightly increases (by ca. 0.07) to 5.8 for the case of
using depth maps as input, since more inpainting is necessary in this
case. Note that the difference in error averaged over all pixels is small
since many image regions are homogeneous.

Table 2. Average and 99% quantile of frame time in milliseconds on the
tablet depending on the target image size, for the dataset used in Fig. 9.
This table shows averages out of 3 runs.

Resol. Avg 99% Resol. Avg 99% Resol. Avg 99%
480×300 27.9 100.3 960×600 37.5 179.0 1600×1000 56.2 374.2
640×400 30.7 117.8 1280×800 45.2 206.2 1920×1200 82.4 414.7

Fig. 10 shows the difference images (last row) for two example
frames (left and right double-columns) from this sequence. Further,
rows 1-7 show the results of intermediate steps of our pipeline while
comparing the use of a single depth map as input against 3D recon-
struction of multiple depth maps (in different columns).

5.3 Runtime
We determined the runtimes of our algorithm on the aforementioned
hardware by running it on an example sequence. The sequence both
contains parts for which dense depth information is available, and parts
where larger regions need to be inpainted. On the PC, our method
took a maximum of about 8 ms for one video frame, with significantly
lower runtimes on average, mainly depending on how fast the inpaint-
ing steps converge. On the tablet, the method took a maximum of
about 100 ms for one frame, however it often took less than 30 ms if
sufficient depth data from the sensor or the previous frame was avail-
able. Fig. 9 shows a plot of the time taken by different algorithm com-
ponents at each frame of the sequence, as well as the corresponding
amount of pixels to be inpainted. Tab. 1 lists the average time taken by
each algorithm step for this sequence and Tab. 2 compares the frame
times on the tablet for different target image resolutions.

We compared the runtimes of the weighted convolution inpainting

Example frame 1 Example frame 2

Single depth map 3D reconstruction Single depth map 3D reconstruction

So
ur

ce
co

lo
ri

m
ag

e
So

ur
ce

w
ei

gh
ts

So
ur

ce
de

pt
h

So
ur

ce
in

pa
in

te
d

de
pt

h
Ta

rg
et

w
ar

pe
d

de
pt

h
Ta

rg
et

w
ar

pe
d

co
lo

r
Ta

rg
et

w
ei

gh
ts

Ta
rg

et
in

pa
in

te
d

de
pt

h
Ta

rg
et

in
pa

in
te

d
co

lo
r

Pr
ev

io
us

fr
am

e
D

iff
er

en
ce

(e
rr

or
)

Error: 6.0 Error: 5.1 Error: 5.4 Error: 4.6

Fig. 10. Illustration of our pipeline for two frames of a sequence. For each frame, we evaluate both using a single depth map (c.f . Sec. 4.1.2), and
using a reconstructed mesh (c.f . Sec. 4.1.3) as input. In addition, a quantitative evaluation has been performed for each frame in the sequence
using its previous frame as target, by comparing the view-corrected result to it. The per-channel color error is given at the bottom.

Authorized licensed use limited to: MICROSOFT. Downloaded on June 04,2024 at 15:01:12 UTC from IEEE Xplore. Restrictions apply.

SCHÖPS ET AL.: REAL-TIME VIEW CORRECTION FOR MOBILE DEVICES 2461

Color image Depth input TV result Convolution result TV inpainting timings on PC

Fr
am

e
1

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

Fr
am

e
2

Fig. 8. Comparison between Huber-TV inpainting and our weighted convolution inpainting approach for two example frames. We used α = 1 for
computing the weights used by the TV inpainting (c.f . Eq. 5). The performance plot corresponds to the right plot in Fig. 9. We developed optimized
implementations of both algorithms; convolution-based inpainting is roughly an order of magnitude faster.

Tango Development Kit Tablet PC

0 100 200 300 400 500 600 700
0

20

40

60

80

100

0 100 200 300 400 500 600 700
0

10000
20000
30000
40000

0 100 200 300 400 500 600 700
0

10000

20000

30000

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

0 100 200 300 400 500 600 700 800
0

10000
20000
30000
40000

0 100 200 300 400 500 600 700 800
0

10000

20000

Render depth image

Upload color image

Dowsample image

Calc. gradient mag.

Inpaint depth (S)

Mesh depth map

Render mesh

Reproject color

Reproject last frame

Inpaint depth (T)

Inpaint color (T)

Fig. 9. First row: Example timings in milliseconds (y axis) for a dataset over a series of frames (x axis) for the different steps of the algorithm, on a
Project Tango Development Kit Tablet (left) and on a PC (right). The tablet drops some frames and thus frame numbers do not correspond. Most
steps are very fast compared to the inpainting and therefore hardly appear in the plot. Since the inpainting speed strongly depends on the size of
the inpainting regions, we show the number of inpainted pixels in the source frame in the second row, and the number of inpainted pixels in the
target frame in the bottom row. This plot is made for the case of using a mesh for depth input. The first step therefore refers to rendering the mesh.
The second and third steps refer to transferring (uploading) IS to the GPU and scaling it to the depth map’s resolution.

Table 1. Average time in milliseconds for individual algorithm steps, and
for a complete frame, corresponding to the graphs shown in Fig. 9.

Source frame steps Tablet PC Target frame steps Tablet PC
Render depth image 1.5 0.4 Render mesh 2.0 0.2
Upload color image 3.0 0.2 Reproject color 0.6 <0.1
Dowsample image 1.0 <0.1 Reproject last frame 0.4 <0.1
Calc. gradient mag. 0.3 <0.1 Inpaint depth (T) 2.1 0.2
Inpaint depth (S) 11.8 0.8 Inpaint color (T) 2.6 0.2
Mesh depth map 1.5 0.2
Complete frame 26.7 2.2

ground truth. Since we have the corresponding input image, we know
how the warped target image should look like. Hence, we measure the
average pixel-wise error between the view correction result and the
ground truth image over an entire sequence. We did not enforce tem-
poral consistency (step (e) in the pipeline) for this experiment. The
evaluation has been limited to pixels which are farther away than 40
pixels from the image border. This is to avoid comparing border re-
gions where there is very little or no adjacent color and depth infor-
mation which can be used for inpainting, such that it would not be
fair to evaluate these regions. Pixel values are in [0,255]. The aver-
age per-channel absolute difference per pixel is 5.7 for using the depth
camera directly, and 5.5 for using a reconstructed mesh. If performing
all inpainting steps with uniform weights instead of using the proposed
weighting, the error roughly stays the same for the case of using mesh
input, while it slightly increases (by ca. 0.07) to 5.8 for the case of
using depth maps as input, since more inpainting is necessary in this
case. Note that the difference in error averaged over all pixels is small
since many image regions are homogeneous.

Table 2. Average and 99% quantile of frame time in milliseconds on the
tablet depending on the target image size, for the dataset used in Fig. 9.
This table shows averages out of 3 runs.

Resol. Avg 99% Resol. Avg 99% Resol. Avg 99%
480×300 27.9 100.3 960×600 37.5 179.0 1600×1000 56.2 374.2
640×400 30.7 117.8 1280×800 45.2 206.2 1920×1200 82.4 414.7

Fig. 10 shows the difference images (last row) for two example
frames (left and right double-columns) from this sequence. Further,
rows 1-7 show the results of intermediate steps of our pipeline while
comparing the use of a single depth map as input against 3D recon-
struction of multiple depth maps (in different columns).

5.3 Runtime
We determined the runtimes of our algorithm on the aforementioned
hardware by running it on an example sequence. The sequence both
contains parts for which dense depth information is available, and parts
where larger regions need to be inpainted. On the PC, our method
took a maximum of about 8 ms for one video frame, with significantly
lower runtimes on average, mainly depending on how fast the inpaint-
ing steps converge. On the tablet, the method took a maximum of
about 100 ms for one frame, however it often took less than 30 ms if
sufficient depth data from the sensor or the previous frame was avail-
able. Fig. 9 shows a plot of the time taken by different algorithm com-
ponents at each frame of the sequence, as well as the corresponding
amount of pixels to be inpainted. Tab. 1 lists the average time taken by
each algorithm step for this sequence and Tab. 2 compares the frame
times on the tablet for different target image resolutions.

We compared the runtimes of the weighted convolution inpainting

Example frame 1 Example frame 2

Single depth map 3D reconstruction Single depth map 3D reconstruction

So
ur

ce
co

lo
ri

m
ag

e
So

ur
ce

w
ei

gh
ts

So
ur

ce
de

pt
h

So
ur

ce
in

pa
in

te
d

de
pt

h
Ta

rg
et

w
ar

pe
d

de
pt

h
Ta

rg
et

w
ar

pe
d

co
lo

r
Ta

rg
et

w
ei

gh
ts

Ta
rg

et
in

pa
in

te
d

de
pt

h
Ta

rg
et

in
pa

in
te

d
co

lo
r

Pr
ev

io
us

fr
am

e
D

iff
er

en
ce

(e
rr

or
)

Error: 6.0 Error: 5.1 Error: 5.4 Error: 4.6

Fig. 10. Illustration of our pipeline for two frames of a sequence. For each frame, we evaluate both using a single depth map (c.f . Sec. 4.1.2), and
using a reconstructed mesh (c.f . Sec. 4.1.3) as input. In addition, a quantitative evaluation has been performed for each frame in the sequence
using its previous frame as target, by comparing the view-corrected result to it. The per-channel color error is given at the bottom.

Authorized licensed use limited to: MICROSOFT. Downloaded on June 04,2024 at 15:01:12 UTC from IEEE Xplore. Restrictions apply.

2462 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 11, NOVEMBER 2017

to that of TV based inpainting. On average, the processing time of the
TV inpainting is an order of magnitude slower. Fig. 8 (right) shows
the processing times of our pipeline with TV-inpainting on the same
sequence as used for the weighted convolution benchmarking in Fig. 9.

6 DISCUSSION

Our test setup has several technical limitations. First, the front camera
of the tablet device cannot be used simultaneously to the back camera,
making it impossible to perform eye tracking on the same off-the-shelf
device. Second, the depth camera on the tablet device uses a low res-
olution and operates at 5 Hz only. Therefore, we used a relatively low
output resolution, and the hardware is not suitable for observing fast-
moving objects. Our system inherits the general limitations of active
depth cameras: e.g., limited range, inability to work in sunlight, in-
ability to measure certain materials. Some of these could be removed
by using passive stereo instead as in [2, 3], or by using it in addition
to the active depth camera. In particular, we think that passive stereo
may be very useful to measure edges, which are often not measured
well by active cameras. Moreover, the color camera of the tablet has
a relatively small field of view. The user’s viewpoint therefore must
not be too close to the screen, otherwise the target view might extend
beyond the input camera’s field of view. This could be improved by
using a fisheye camera.

There are also some conceptual limitations to the algorithm. Since
the inpainting algorithm only diffuses colors which creates areas of
relatively constant color, inpainted regions will be over-smooth and
appear less plausible in strongly textured scenes. However, higher-
quality inpainting methods would be computationally expensive. In
general, view-dependent effects such as specular highlights are not ac-
counted for by the algorithm. Moreover, for depth input via 3D recon-
struction we observed slight misalignments of disocclusion boundaries
due to small errors in the reconstruction or the odometry. Further work
could tackle these issues to improve the quality of the results.

7 CONCLUSION

We presented an efficient approach for rendering novel synthesized
views from potentially sparse depth and image data. The core algo-
rithm of our processing pipeline is a diffusion-based inpainting algo-
rithm that favors depth discontinuities at possible object edges, which
are usually indicated by color or brightness changes in the input im-
age. We ensure that the inpainting returns temporally consistent re-
sults, which is important to avoid flickering artifacts. We further dis-
cussed a method for the screen-camera calibration of the setup. Our
experiments demonstrate that our method can yield pleasing results at
real-time frame rates on current mobile devices.

ACKNOWLEDGMENTS

Thomas Schöps was supported by a Qualcomm PhD Fellowship until
June 2016, and by a Google PhD Fellowship starting from July 2016.
Pablo Speciale and Martin R. Oswald have received funding from the
European Union Horizon 2020 research and innovation programme,
under grant agreements No. 637221.

REFERENCES

[1] R. G. D. A. Azevedo, F. Ismério, A. B. Raposo, and L. F. G. Soares. Real-
time depth-image-based rendering for 3DTV using OpenCL. In ISVC,
pages 97–106, 2014.

[2] D. Baričević, T. Höllerer, P. Sen, and M. Turk. User-perspective aug-
mented reality magic lens from gradients. In VRST, 2014.

[3] D. Baričević, T. Höllerer, P. Sen, and M. Turk. User-perspective AR
magic lens from gradient-based IBR and semi-dense stereo. TVCG,
23(7):1838–1851, 2017.

[4] X. Bresson, S. Esedoḡlu, P. Vandergheynst, J.-P. Thiran, and S. Os-
her. Fast global minimization of the active contour/snake model. JMIV,
28(2):151–167, 2007.

[5] P. Buyssens, M. Daisy, D. Tschumperlé, and O. Lézoray. Superpixel-
based depth map inpainting for RGB-D view synthesis. In ICIP, pages
4332–4336, 2015.

[6] P. Buyssens, O. Le Meur, M. Daisy, D. Tschumperlé, and O. Lézoray.
Depth-guided disocclusion inpainting of synthesized RGB-D images.
TIP, 26(2):525–538, 2017.

[7] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. JMIV, 40(1):120–145, May 2011.

[8] T. F. Chan and J. Shen. Mathematical models for local nontexture in-
paintings. SIAM J. Appl. Math, 62:1019–1043, 2002.

[9] S. E. Chen and L. Williams. View interpolation for image synthesis. In
SIGGRAPH, pages 279–288. ACM, 1993.

[10] A. Criminisi, P. Perez, and K. Toyama. Region filling and object removal
by exemplar-based image inpainting. Trans. Img. Proc., 2004.

[11] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. In SIGGRAPH, 1996.

[12] A. Delaunoy, J. Li, B. Jacquet, and M. Pollefeys. Two cameras and a
screen: How to calibrate mobile devices? In 3DV, 2014.

[13] L. C. Evans. Partial differential equations. Graduate studies in mathe-
matics. American Mathematical Society, Providence (R.I.), 1998. Rimpr.
avec corrections : 1999, 2002.

[14] J. Heikkila and O. Silven. A four-step camera calibration procedure with
implicit image correction. In CVPR, pages 1106–1112, Jun 1997.

[15] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis. Camera-
IMU-based localization: Observability analysis and consistency improve-
ment. IJRR, 2013.

[16] O. Kahler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. H. S. Torr, and D. W.
Murray. Very High Frame Rate Volumetric Integration of Depth Images
on Mobile Devices. In ISMAR, 2015.

[17] N. Kawai, T. Sato, and N. Yokoya. Diminished reality based on image
inpainting considering background geometry. TVCG, 22(3):1236–1247,
2016.

[18] M. Klingensmith, I. Dryanovski, S. Srinivasa, and J. Xiao. Chisel: Real
Time Large Scale 3D Reconstruction Onboard a Mobile Device. In RSS,
2015.

[19] M. Kulkarni, A. N. Rajagopalan, and G. Rigoll. Depth inpainting with
tensor voting using local geometry. In G. Csurka and J. Braz, editors,
VISAPP, pages 22–30. SciTePress, 2012.

[20] S. Li, K. N. Ngan, and L. Sheng. Screen-camera calibration using a
thread. In ICIP, pages 3435–3439, Oct 2014.

[21] C. Linz, C. Lipski, and M. A. Magnor. Multi-image interpolation based
on graph-cuts and symmetric optical flow. In SIGGRAPH. ACM, 2010.

[22] C. Lipski, C. Linz, K. Berger, and M. A. Magnor. Virtual video cam-
era: image-based viewpoint navigation through space and time. In SIG-
GRAPH Posters. ACM, 2009.

[23] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. In SIGGRAPH, 1987.

[24] G. Luo, Y. Zhu, Z. Li, and L. Zhang. A hole filling approach based on
background reconstruction for view synthesis in 3D video. In CVPR,
2016.

[25] S. Lynen, T. Sattler, M. Bosse, J. A. Hesch, M. Pollefeys, and R. Siegwart.
Get out of my lab: Large-scale, real-time visual-inertial localization. In
RSS, 2015.

[26] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3D
reconstruction at scale using voxel hashing. In SIGGRAPH Asia, 2013.

[27] M. M. Oliveira, B. Bowen, R. McKenna, and Y. sung Chang. Fast digital
image inpainting. In VIIP, pages 261–266. ACTA Press, 2001.

[28] T. Pock and A. Chambolle. Diagonal preconditioning for first order
primal-dual algorithms in convex optimization. In ICCV, pages 1762–
1769, Washington, DC, USA, 2011.

[29] S. M. Seitz and C. R. Dyer. View morphing. In SIGGRAPH, 1996.
[30] M. Tomioka, S. Ikeda, and K. Sato. Approximated user-perspective ren-

dering in tablet-based augmented reality. In ISMAR, 2013.
[31] K. Wu, A. Ahmed, G. Georgiou, and S. Roumeliotis. A Square Root

Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile
Devices. In RSS, 2015.

[32] S. S. Yoon, H. Sohn, Y. J. Jung, and Y. M. Ro. Inter-view consistent hole
filling in view extrapolation for multi-view image generation. In ICIP,
October 2014.

[33] Z. Zhang. A flexible new technique for camera calibration. PAMI,
22(11):1330–1334, Nov 2000.

[34] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. A. J. Winder, and
R. Szeliski. High-quality video view interpolation using a layered rep-
resentation. TOG, 23(3):600–608, 2004.

Authorized licensed use limited to: MICROSOFT. Downloaded on June 04,2024 at 15:01:12 UTC from IEEE Xplore. Restrictions apply.

